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Fluctuating Hydrodynamics and Principal 
Oscillation Pattern Analysis 

Alejandro Gareia I and C&ile  Penland 2 

Principal oscillation pattern (POP) analysis was recently introduced into 
climatology to analyze multivariate time series x~(t) produced by systems whose 
dynamics are described by a linear Markov process k = Bx + ~, The matrix B 
gives the deterministic feedback and ~ is a white noise vector with covarianees 
(~i(t) ~j( t ' ) )=Qo6(t- t ' ) .  The POP method is applied to data from a direct 
simulation Monte Carlo program. The system is a dilute gas with 50,000 
particles in a Rayleigh-B6nard configuration. The POP analysis correctly 
reproduces the linearized Navier-Stokes equations (in the matrix B) and the 
stochastic fluxes (in the matrix Q) as given by Landau-Lifschitz fluctuating 
hydrodynamics. Using this method, we find the Landau-Lifschitz theory to be 
valid both in equilibrium and near the critical point of Rayleigh B6nard convec- 
tion. 

KEY W O R D S :  Fluctuating hydrodynamics; Rayleigh-B6nard convection; 
Langevin equation; principal oscillation pattern analysis. 

1. INTRODUCTION 

Rayleigh-B6nard convection is a paradigm instability; at a critical Rayleigh 
number there is a bifurcation between states of purely conductive heat flow 
and buoyancy-driven convection. ~ The nature of the hydrodynamic fluc- 
tuations near this transition point has been studied theoretically by a 
variety of methods. (2) The Santa Barbara group has performed several 
careful experiments and has measured the variation in the heat flux near 
the onset of convection. (3) Quantitative comparison between fluctuating 
hydrodynamics calculations and laboratory experiments reveals significant, 
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unaccountable discrepancies./4) In this context, new methods for studying 
fluctuation phenomena are welcome. In this paper, principal oscillation 
pattern (POP)  analysis, a statistical technique developed in climatology, (5) 
is used to analyze data from a particle simulation of a dilute gas near the 
onset of convection. The POP method may be seen as an extension of the 
traditional use of correlation functions; it has the advantage that very little 
is assumed about the form of the linearized equations. 

2. F L U C T U A T I N G  H Y D R O D Y N A M I C S  

Landau and Lifschitz proposed that thermal fluctuations at the 
molecular level could be modeled by adding a random component to 
the stress tensor and the heat flux in the Navier-Stokes equations. (6) In the 
case where the density Po, the velocity Vo = 0, and the temperature T o are 
the deterministic, steady-state solutions, and where tip, 6V, and fiT are the 
fluctuations around the steady-state solutions, the linearized hydrodynamic 
equations are 

06p 
- poV-fiV (la)  

c~t 

~6V 
Po Ot - - =  - V  b P - 6 p  g j -  #V • IV• bY] 

+ v[(;o+ ~u)v. ~ v ] - v . s  (lb) 

0f i t  
- - -  PoV. 6V + tgV2 6 T - V .  q (lc) pocv Ot 

where P is the pressure, g is gravitational acceleration, and the transport 
coefficients are: /~, shear viscosity; 2, bulk viscosity ( = 0  for a dilute gas); 
and ~, thermal conductivity. The unit vector in the y direction is j. 

The white noise parts of stress tensor S and heat flux q have zero mean 
and variance, 

(S~(r,  t) Skl(r', t ' ) )  = 2kB#T(6ik6jt + 6it6jk -- 26~6kj) 

X 6( r - - r ' )  6 ( t -  t') (2a) 

(qi(r,  t) qj(r', t ' ) )  = 2kBxT2606(r - r ' )  6 ( t -  t') (2b) 

where 6ij is the Kronecker delta, 6(x) is the Dirac delta function, and k~ 
is Boltzmann's constant. 

The Navier-Stokes equations may be discretized on an N x M grid; let 
(i, j) be indices designating the location x = i A ,  y = j A .  The spatial 



Fluctuating Hydrodynamics and POP Analysis 1123 

derivatives are replaced by their discretized forms; for example, the 
Laplacian terms are transformed as 

V2 1 f=~5[ f ( i+ l , j )+ f ( i - l , j )+ f ( i , j+ l )+f ( i , j -1 ) -4 f ( i , j ) ]  (3) 

We can then express the fluctuating Navier Stokes equations in the form 

d 
- -  x = n x  + ~ ( 4 )  
dt 

by using the construction 

x r =  (6p(1, 1), 6Vx(1, 1), 6Vy(1, 1), 6Vz(1, 1), 6T(1, 1),..., 

6p(N, M), 6Vx(N, M), 6Vy(N, M), 6Vz(N, M), 6T(N, M)) (5) 

The variance of the white noise is (~i(t) ( j ( t ' ) )  = Qij6(t- t'). 
The matrix B contains the linearized Navier-Stokes equations. For 

example, in a dilute gas, the density affects the change in the y component 
of velocity through the pressure term in Eq. (lb) as 

~6vy ~ ~6p 
P0 t?t = - K ~ O - ~ y  + -"  (6) 

since the pressure is P = pRT. The corresponding term in the matrix B is 

RTo 
vyp = (bj+ 1,/-- 6j_ 1,/)6i i' (7) B~;iT' 2poA 

The y component of velocity is coupled to itself through the viscous term 
in the velocity equation (lb): 

06Vy f~26Vy 4 t~26_Vy~ 
p o - - b U = . t - g y + 3  0y2 )+  ... (8) 

The corresponding term in the matrix B is 

Oij;i,j,VyVy _Do A211 {((~i+li,~_Oi_l i,__2~i,i,)(~j,j , 

4 } 
q- ~ (~j+ 1,j' -'}- ~j l,j' -- 2~j,j,) ~i,i' (9) 

In Section 5, we see that the POP analysis can reconstruct these B coef- 
ficients from the time series x(t). 
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3. PRINCIPAL OSCILLATION PATTERN (POP)  ANALYSIS  

For the linear Markov process, ~ = Bx + ~, the principal oscillation 
patterns (POPs) are the eigenfunctions of the deterministic feedback 
matrix B. (5'7~ In other words, the POPs are the empirically computed eigen- 
modes of the system. We identify the Green function 

G(z) = exp(B~) = (x ( t  + z) x r ( t ) ) ( x ( t )  x r ( t ) )  i (10) 

The POP analysis obtains an estimate for B as follows: Given a time series 
x(t), one calculates the matrices (x ( t )  x r ( t ) )  and (x ( t  + r) x r ( t ) )  and 
forms G. The eigenvalues g ~ -  exp(/~z) and eigenvectors u~ of G are com- 
puted as well as the eigenvectors v~ of G T. One obtains the eigenvalues/~ 
of B from the eigenvalues g~ of G and forms the deterministic feedback 
matrix as 

B=~u~f l~v  2 (11 
c~ 

After finding B, the equal-time covariance of the noise (~i~-s)--= Qi; is 
calculated as 

Q = - ( B ( x ( t )  x r ( t ) )  + (x( t )  x r ( t ) )  B T) (12) 

Note that B and Q are obtained solely from the time series data x(t). If the 
system is well described by a linear Markov process, then our estimate of 
B and Q will be independent of the choice of'c. 3 On the other hand, if non- 
linear effects are important, then B and Q will vary significantly with z. 

4. DILUTE GAS S I M U L A T I O N  

We use the direct simulation Monte Carlo (DSMC) method (8~ to 
simulate a dilute gas of 50,000 hard spheres. The method has been used 
successfully to study fluctuations in simple nonequilibrium systems. ~ In 
this paper, the geometry is a square container with periodic boundary 
conditions in the z direction; the length of a side L equals 50 mean free 
paths. The top and bottom walls (y = 0, L) are slip, thermal walls, while 
the sides (x = 0, L) are slip, insulated walls. Typical run length is about 108 
collisions (103-104 timesteps). The container is divided into 100 boxes of 
equal size and at each timestep the density, velocity, and temperature are 
measured in each box. These data are used to construct the vector x(t) to 
which the P OP  analysis is applied. All runs were performed on a Sun 4/260 
workstation. 

3 Some values of r will give greater accuracy. A POP with eigenvalue 3 is most accurately 
obtained when z = -1/Re ft. 
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5. POP ANALYSIS:  N O N C O N V E C T I N G  CASES 

The first case we consider is an equilibrium system. The POPs for the 
stream function agree with the known equilibrium eigenmodes for slip 
boundaries, ~Jmn ~-sin(mn/L)sin(nn/L), m, n = 1, 2 ..... A contour map of 
the fourth POP ( m = n = 2 )  is shown in Fig. 1. Ordering the POPs in 
decreasing e-folding time ~ =  1/Re(/~), we find that the e-folding time 
varies as ~ co 1/(m 2 + n2). In the deterministic feedback matrix B, the effect 
of density on the y component of the velocity is given by Eq. (7). For a 
location near the center of the system, the POP analysis reproduced this 
form, as shown in Fig. 2. Similarly, the effect of the y component of the 
velocity on itself is given by Eq. (9). For  a location near the center of the 
system, the P OP  analysis reproduced this form, as shown in Fig. 3. These 
examples show that the POP method can reconstruct the linearized 
Navier-Stokes equations from the time series. 

For the noise covariance in the x component of the velocity, 
fluctuating hydrodynamics predicts 

Q~'.,r;'- 2kBIJT~ 14 6 26i,;) 6j, j, ,1'p~ _7 ( '+1'' '+<~'-~'' '- 

+ (6s+~,s+6s ~,;-26;,;,)6,,,,~ (13) 
) 

/\\\\\V--~????//1', <~<, ,<,. : ~ .  ,, ,- 
I \ \ ~ \ ~ / / 1 1 1 | ~  ~ ~ ~ \  . j ,  , I i  

\ \ \ ~  ~ I ~  / I I \ \  \ \ \ ~ ~ 

i ; i  ~ "i. ---. 
? ? , .  

P I I i  - -  - -  ~, ' ~ /  

t \ \  \ \ \ I I I I I I I l ~ ' l l f l i / . - - - - - - ' - - i ~  \ \ \ 

' ~ ~ < ,  ,. " - ' , 7 ~ ' ~ ' f f f ( ' < ' ~ ' ~  _. 1 J 3 ) 
I t \ \ x ~ ~ l i l l / / l l l  \ - -  d < ~ J /  I 
I \ \ ~1,i111/11 \ / / J J  

= - 7 - - - ?  T ~ , , 
Fig. 1. Contour  plot of the stream function for the fourth principal oscillation pattern 
obtained from the time series. Solid lines are positive contours; dashed lines are negative 
contours. Compare  with ~b=2 = sin(2nx/L) sin(2ny/L). 
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Fig. 2. Landscape and contour plot of B~'~,, [see Eq. (7)] for i =  4, j =  4. The system is at U; J 
equilibrium. This is the pressure term in the c~Vp equation. We expect a peak at i ' =  4, j ' =  3 
and an equal trough at i' --- 4, j '  = 5. 
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o ~,v, [see Eq. (9)] for i = 4 ,  j = 4 .  The system is at Fig. 3. Landscape and contour plot f Bo;i v, 
equilibrium. This is the viscosity term in the 6Vy equation. We expect a trough at i ' =  4, j '  = 4 
and a peak at each of the four nearest-neighbor points. 
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0.5 

0.4 

"~ 0.2 

g 
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~0.2 

vx [see Eq. (13)] for i = 4 ,  ] = 4 .  The system is at Fig. 4. Landscape and contour plot of Qu;i~' 
equilibrium. We expect a peak at i'=4, j '=4 and a trough at each of the four nearest- 
neighbor points. 

This function has a strong peak at i =  i', j =j '  and smaller troughs at the 
four nearest-neighbor points. For  a location near the center of the system, 
the results from the POP  analysis are shown in Fig. 4. Good results are 
also obtained for the noise variances in the y component of velocity and 
temperature. 

Using the POP  analysis, we compute the temperature dependence of 
the amplitude of the noise. We simulated a system without gravity in the 

/ 
0.5 [] e(u) % ,- 
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0.1 

0 
0. 5 O ~m 6 0 ' 7 0 't B 0 ' 9 1 3 ' 1 1 ' 2 1 . 3 

To 

Fig. 5. Noise variance as a function of temperature in a system with a linear temperature 
gradient (i.e., conduction state). The open squares and circles are QV~ and Q~, respectively. 
The solid circles are Qr. Solid lines are the least-square power law fit to the data. Compare 
with gqs. (14~(16). 
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since ~c(To) oc 
state gives 

conduction state (linear temperature gradient). From fluctuating 
hydrodynamics, the noise variance for the velocity is 

QVx or Q~ oc # ( r~  TO P~ 2 oc T~/2 (14) 

since #(To)oc ~ o P o  and Po oc 1~To (the pressure is constant in the 
system). The noise variance for the temperature is 

 (ro) T o  2 r7/2 (15) 
QT oc P~ 2 oc -o 

~ o o  Po" The POP  analysis for a system in the conduction 

�9 T2.37 QT T3,47 (16) Q~x oc Tg .65, Q~ oc - o  , oc -o 

These results are presented in Fig. 5. These last two figures show that the 
analysis can reconstruct the noise variances from the time series. 

6. POP ANALYSIS: RAYLEIGH-BI~NARD CONVECTION 

For a dilute gas, the density profile in the conducting state goes as 
Po oc Tg, where a = m g L / k B  A T - 1 ,  the mass of a particle is m, and A T  is 
the vertical temperature gradient. By taking the value of the gravitational 
field as g = kB A T/mL, the density is constant throughout the system. For 
a dilute gas, the Rayleigh number may be written as 

(17) 

0 .25  . I , I , I ~ ,  I , I , I 

0 .15  

0.05 

E 
o-o .o5  

" c  

- 0 . 15  

R = ( 2 5 6 / 1 2 5 = ) ( A  T/To)  2 (L / , I . )  2 

- 0 . 25  , , , , ' , ' , ' , ' , ' , ' , ' , ' 

0 10  20  30  40  50  

He igh t  (Mean  F ree  Pa ths )  

Fig. 6. Horizontal (x) velocity versus height (y) in a vertical slice through the center of the 
system. The convection is fully developed, the Rayleigh number is well above critical 
(R ~ 1.7Re). The solid line is the average velocity measured in the DSMC simulation. The 
dashed line is the numerical solution of the deterministic Navier-Stokes equations. 
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where 2 is the mean free path in the gas. In our system, since the walls were 
slip-slip and the aspect ratio was unity, the critical Rayleigh number was 
Rc ~ 780. (1) 

We first simulated a system well above the critical Rayleigh number 
( R =  1357~1.7R~.). Comparing the flow field obtained in the DSMC 
simulation with the numerical solution of the deterministic Navier-Stokes 
equations, we find excellent quantitative agreement (see Figs. 6 and 7). 

The POP analysis was performed on the data from the particle simula- 
tion for a system near the critical Rayleigh number. The first POP is the 
mode which becomes unstable; its e-folding time increases dramatically 
(factor of 5), indicating critical slowing down. The e-folding time of all the 
other POPs remained close to their equilibrium values. 

The spatial correlation of the noise is found to be very similar to its 
equilibrium form (see Fig. 8 and compare with Fig. 4). From fluctuating 
hydrodynamics, the noise variances are given by Eqs. (14) and (15). 
However, since the gravitational field maintains the density Po constant in 
the Rayleigh-B6nard system we have 

T5/2 (18)  QVx or QVyocT3/2 and Q V o c _  o 

Using the data from the DSMC simulation for a system near the critical 
point, the POP analysis gives 

QVx oc r~ '9, QVy oc r~ 3s, QT oc Tg 35 (19) 

These results are illustrated in Fig. 9. These last two figures show that the 
noise terms in the Landau-Lifshitz fluctuating hydrodynamics retain their 
equilibrium form near the critical Rayleigh number. 
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Fig. 7. Vertical (y) velocity versus height (y) in a vertical slice through the center of the 
system. See Fig. 6 caption for details. 
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0 .6  

O'4 "~ "~- 

"~ O- 

Vx Fig. 8. Landscape and contour plot of Q,y;iv, [see Eq. (13)] for i=4, j=4 .  The Rayleigh 
number in the system is near the critical value. Compare with Fig. 4. 

The results presented here for the system near  the cri t ical  Rayle igh 
number  are still pre l iminary.  F o r  a number  of reasons (e,g., t empera tu re  
" jump"  at  the walls)  it is difficult to measure  precisely the dis tance from 
criticality. Ideal ly,  we would  like to r a m p  the t empera tu re  profile slowly 
th rough  the cri t ical  po in t  as is done in the l a b o r a t o r y  experiments.  (3) We 
hope to do  some runs of this type in the near  future. 

o.8 o Q(v/  
/ e  

0.7 [] Q(u) ~ /  
/ 060 0  

0.3 I 

0.2 . . . . . . . . . . .  
0.7 018 019 4 111 112 1.3 

T 

Fig. 9. Noise variance as a function of temperature in a system near the critical Rayleigh 
number. See Fig. 5 caption for details. Compare these results with the similar graph for the 
conduction state (Fig. 5); see also Eqs. (18) and (19). 
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7. CONCLUSION A N D  R E M A R K S  

In this paper, we apply the principal oscillation pattern analysis to 
data from a particle simulation. The method does a reasonably good job 
of reconstructing the fluctuating hydrodynamics equations including the 
noise terms. While the POP method offers several advantages over more 
traditional methods, its main disadvantage is that longer time series are 
needed to accurately reconstruct B and Q. In the work presented here, the 
matrices B and Q are each 500 • 500 in size (five hydrodynamic variables; 
100 spatial locations)~ The number of available data points in a typical run 
was 5 x 106 or about 10 data points per unknown coefficient. In a model 
examined in ref. 7 it is found that B and Q may be accurately reconstructed 
with as few as 10 data points per coefficient, depending on the eigenvalues 
of B. 

In computer simulations, obtaining enough data is only a question of 
available resources; recall that all the work presented here was done on a 
workstation. While in some laboratory experiments it may be difficult to 
obtain enough data to use the POP method, we anticipate that modern 
computer-aided data acquisition will ameliorate this problem. For example, 
the POP analysis may be applied to the digitized video camera images 
from the electroconvection experiments described by Rehberg et al. in this 
proceedings. 
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